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Dragoş-Victor Anghel

National Institute of Physics and Nuclear Engineering, Str Atomistilor no 407, PO Box MG-6,
Bucharest, Magurele, Romania

Received 25 January 2006
Published 19 April 2006
Online at stacks.iop.org/JPhysA/39/4787

Abstract
I investigate the thermodynamic equivalence between finite systems of constant
density of states below the Bose–Einstein condensation temperature. I
show that in order to preserve the equivalence, a phenomenon called Fermi
condensation has to be taken into account. This phenomenon leads to a
correction of the intensive parameters of the Fermi gas and of the Fermi
distribution in canonical Fermi systems at low temperatures.

PACS numbers: 05.30.Ch, 05.70.−a, 05.90.+m

1. Introduction

Two systems under canonical conditions and with the same number of particles are called
thermodynamically equivalent if their heat capacities are the same at any temperature and any
particle number [1, 2]. If we take as a variable in the entropy function the temperature instead
of the total energy, then the equality of the heat capacities implies the equality of the entropies
of the two systems. The thermodynamic equivalence splits the set of all physical systems into
equivalence classes. Notorious among these classes are the ones formed by ideal Bose and
Fermi gases of equal and constant density of single-particle states (DOS) [3–5]. To make this
more precise, a Bose and a Fermi gas of the same constant DOS have the same heat capacity
at constant volume and the same entropy as a function of temperature. Although it was first
proved a long time ago [3], this peculiar property of gases in two dimensions (2D) has received
the deserved attention only relatively recently [1, 2, 8, 9, 14, 17, 19–21]. The thermodynamic
equivalence appears now less peculiar, after Lee introduced a unified description of Bose
and Fermi gases in terms of polylogarithmic functions [1] and one-to-one mappings between
microscopic configurations of bosons to microscopic configurations of fermions with the same
excitation energies were found [2, 9].

Moreover, it was shown that also systems of particles which obey a generalization
of the Pauli exclusion principle [10] (so-called fractional exclusion statistics–FES) have
a heat capacity that does not depend on the exclusion statistics [15]. In this way, the
equivalence classes of bosons and fermions with the same constant DOS are extended and
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their thermodynamical descriptions in terms of polylogarithmic functions, as given by Lee [1],
are bridged together by the general description of the continuous set of FES systems [2].

Based on the mapping between microscopic configurations of bosons and fermions the no-
tion of Fermi condensate was introduced [11] and a new kind of ensemble equivalence—based
on the population of the Fermi condensate and its fluctuation—was proposed [12]. In [22],
it was shown that canonical and grand-canonical fluctuation of the Fermi condensate in a
constant DOS system are the same in the thermodynamic limit.

In [20], Pathria examined critically the thermodynamic equivalence between Bose and
Fermi gases and concluded that it should not hold below the 2D Bose–Einstein condensation
temperature (which is different from zero for finite systems).

In this paper, after presenting briefly the Fermi condensation and both, macroscopic and
microscopic equivalence between ideal Bose and Fermi gases with constant DOS, I will show
that the Fermi condensate produces a small shift of the chemical potential in the canonical
Fermi system. This shift re-establishes the thermodynamic equivalence of the two gases at
low temperatures.

2. Fermi condensation

Let a system S be in contact with a heat and particle reservoir, R. The micro-states of the
system will be denoted by mi . If I assume that the system is ergodic and all the micro-states
corresponding to any fixed E and N are equally probable, then the probability associated with
any state, say p(mE,N) satisfies

p(mE,N) ∝ eβ(E−µN), (1)

where β ≡ 1/(kBT ), T is the temperature and µ is the chemical potential of the reservoir.
The same probability distribution may be obtained if we take as starting point information

theory [6]. The information we start with is the average energy and the average particle number,
E and N, respectively. Then the probability distribution (1) is the least biased estimate possible
on the given information [6]. From this point of view it has importance if the system is ergodic
or not. For a macroscopic system the maximum of the probability distribution is sharply
peaked around the average values, 〈N〉 and 〈E〉, so both particle number and internal energy
have well-defined values.

Now let us assume that we can calculate (and measure) a macroscopic parameter, which
I shall denote by X. The probability distribution over the micro-states is given by equation (1)
and from this one can calculate the probability distribution over the parameter X:

Px(X) =
X(mi)=X∑

i

p(mi). (2)

If X is well defined, then Px(X) should have a sharp peak at X = 〈X〉. If Px(X) has two
maxima, then the system undergoes a phase transition. In each of the phases, one maximum
dominates and this fixes the value of X for that phase [2, 7] (say we have X1 for phase 1 and
X2 for phase 2). If the total energy corresponding to phase 1, E(X1), is different from the
total energy in phase 2, E(X2), then the phase transition is of order 1. Otherwise it is of higher
order [7].

For a system of fermions, a parameter which is surprisingly interesting to analyse is the
number of particles that occupy completely an energy interval (no holes left in this interval)
starting at the bottom of the single-particle spectrum [2, 11, 12]—let us call this parameter N0

and the energy interval [0, ε0]. In [2] I gave an example of an interacting system for which the
probability distribution Pn(N0) forms, below a certain temperature, two competing maxima.
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One maximum, which exists for any T > 0, is located at N0 = 0 and the other appears at
finite N0. At transition temperature the maximum centred at N0 > 0 equals the maximum
existent at N0 = 0 and a first-order phase transition occurs. Above the transition temperature
Pn(N0) is maximum at N0 = 0 and 〈N0〉(� 0) is microscopical. Below transition temperature
Pn(N0) is maximum at N0 > 0, so 〈N0〉 > 0 is a macroscopic quantity. Due to the interaction,
an energy gap is formed between the degenerate N0 particles and the rest of the particles.

The same parameter may be analysed for a system of ideal fermions. Assume that the
density of states (DOS) has the general form σ(ε) = Kεs , where K and s are constants. Now I
require that N0 particles form a degenerate subsystem on the first N0 energy levels, and the first
hole in the spectrum appears at energy ε0 (or energy level N0 + 1—see [11] for details). Using
again equation (2), I calculate Pn(N0). If Z is the partition function of the system, and ZN0 is
the number of configurations with the first hole appearing at N0 + 1, then Pn(N0) = ZN0

/
Z ,

where

logZN0 =
[
−β

(
K

εs+2
0

s + 2
− ε0

)
+ βµ

(
K

εs+1
0

s + 1
− 1

)]
+ K

∫ ∞

ε0

dε εs log[1 + e−β(ε−µ)].

(3)

Since Z is a constant, the extrema of Pn are found by solving dZN0

/
dN0 = 0 or

equivalently [11],

d logZN0

dε0
= −Kεs

0

{
log[1 + eβ(ε0−µ)] − β

Kεs
0

}
= 0. (4)

If s > 0, then log Pn has one and only one maximum at N0 > 0, so for any macroscopic
systems (i.e. large enough K) there will be a degenerate subsystem on the lowest energy
levels at any temperature. If s = 0 (e.g. particles in a two-dimensional flat potential or in
a one-dimensional harmonic potential) there is a transition temperature, Tc,2D , below which
the maximum of P(N0) moves from N0 = 0 to N0 > 0, i.e. a degenerate gas forms. The
degenerate gas may be put in correspondence with the the Bose–Einstein condensate in a
gas of bosons with similar spectrum [2, 11–13] and for simplicity I shall call it the Fermi
condensate or the degenerate subsystem. The most interesting case seems to be s < 0, when
log P has either only one maximum, at N0 = 0, or two maxima, at N0 = 0 and N0 > 0.
As the temperature decreases, the second maximum increases and becomes bigger than the
maximum at N0 = 0.

2.1. Fermi condensation for constant density of states

For constant σ , in the (quasi)continuous limit (σkBT � 1), we have

logZN0 = −βσε2
0

2
+ βµ

(
σε0 +

ε0

µ
− 1

)
+ σ

∫ ∞

ε0

dε log[1 + e−β(ε−µ)]. (5)

In such a case equation (4) has a solution if and only if log[1 + e−βµ] < (σkBT )−1. Therefore,
as in [11], I define the condensation temperature Tc,F by the equation

log[1 + e−βc,F µ] = (σkBTc,F )−1. (6)

Since σkBT � 1, then equation (6) implies that for T � Tc,F we have µ/kBT � 1. Using
the approximation N ≈ σµ, valid for βµ � 1 and equation (6) I get a simpler equation
for Tc,F :

N ≈ σkBTc,F log(σkBTc,F ). (7)
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Figure 1. Probability distribution around the maximum value, of the number of particles in the
condensate, as a function of (µ− ε0)/kBT , (µ− ε0)/kBT = σkBT . The absolute values of P(ε0)

are irrelevant here, so are omitted. The distribution is asymmetric, with 〈N0〉 < N0,max.

For T < Tc,F equation (4) becomes log[1 + eβ(ε0−µ)] = (σkBT )−1(�1) and its solution may
be approximated by

ε0,max = µ − kBT log[σkBT ]. (8)

The particle number that is associated with ε0,max is N0,max = ε0,maxσ = σµ −
σkBT log[σkBT ]. The distribution Pn(N0) is not symmetric (see figure 1) and 〈N0〉 < N0,max

[22]. In the low-temperature limit 〈N0〉 converges to N0,max, but a closed general expression
for 〈N0〉 is difficult to find.

3. Thermodynamic equivalence from the macroscopic point of view

As mentioned in the introduction, two gases are thermodynamically equivalent if they have the
same canonical heat capacity C at any temperature and particle number. Integrating (C/T ) dT

from 0 to T, we obtain the entropy S(T ,N, . . .) (the entropy might depend on other extensive
parameters—like σ or V —which I do not specify explicitly), which is also the same for the two
gases. Nevertheless, the entropy is usually defined as a function of U,N, . . . , and if the two
gases do not have the same U(T ) for any T, then the entropies as functions of the extensive
variables are also different. Nevertheless, we can make the entropies coincide by translating
S(U,N, . . .) along the U axis, for any N.

Let us take as example the Fermi and Bose gases of equal and constant σ . Under
grandcanonical conditions, the entropy and internal energy of a Fermi gas have the expressions

S = −σk2
BT [2Li2(−eβµ) + βµ log(1 + eβµ)] (9)

and

U = −(kBT )2σLi2(−eβµ), (10)

respectively. Combining (9) and (10) I get

S = 2U

T
− µ

T
N ≡ U

T
− �F

T
− µ

T
N, (11)

where �F = −U is the grandcanonical potential of the gas. The average number of particles
in the gas is

Ñ = σµ + σkBT log[1 + e−βµ]. (12)
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Figure 2. Surface I: the entropy of a Fermi system, s ≡ S/kBσ , as a function of N ≡ N/σ and
u ≡ U/σ . The range on the vertical axis is from 0 to π

√
2/3. Surface II is obtained from surface

I by subtracting from the energy U, the ground state energy of the system, Ug.s.(N) = N2/2σ .

(This figure is in colour only in the electronic version)

To work in the variables U and N we have to invert equations (10) and (12) and plug the
expressions we obtain for T and µ into (9). Vice versa, from S(U,N, . . .), the temperature
and the chemical potential are calculated as T = (∂S/∂U)−1 and −µ/T = (∂S/∂N)−1,
which can then be used to write S = S(T , µ, . . .).

For our case, to obtain simple expressions for T, µ and S let us do the calculations in
the low-temperature limit. In this limit βµ � 1 and I can neglect e−βµ from equation (12),
retaining

N ≈ βµ. (13)

On the other hand, using the expansion

Li2(−eβµ) ≈ − (βµ)2

2

[
1 +

π2

3(βµ)2

]
(14)

and equation (13), U may be approximated as

U ≈ N2

2σ

[
1 +

π2

3
·
(

σkBT

N

)2
]

. (15)

Eliminating kBT and βµ from equations (13) and (15) and plugging it into (9) I get

S

kBσ
≈ π

√
2

3
·
(

U

σ
− N2

2σ 2

)
. (16)

The result (16) is plotted as surface I in figure 2.
I denote the zero-temperature energy of the Fermi gas by U0(N) ≡ N2/2σ and

I define the excitation energy, UB ≡ U − U0(N). With these notations, I introduce
SB(UB,N) ≡ S(UB + U0(N),N), which in the low-temperature limit is

SB

kBσ
≈ π

√
2

3
· UB

σ
. (17)

Equation (17) is plotted as surface II in figure 2. The chemical potential of the gas B is related
to the chemical potential of the Fermi gas by µB = µ − dU0/dN = µ − εF .
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Otherwise, a general expression for UB may be obtained by using Landen’s relation,
Li2(−y) + Li2[y/(y + 1)] = − 1

2 log2(1 + y) [1, 16]:

U = (kBT )2σLi2[(1 + e−βµ)−1] +
(kBT σ)2

2σ
ln2(1 + eβµ)

= UB + U0(N),

where

UB = (kBT )σLi2[(1 + e−βµ)−1] (18)

and

U0(N) = (kBT σ)2

2σ
ln2(1 + eβµ) = N2

2σ
.

Applying Landen’s relation to equation (9), I get

S = 2UB

T
+

N2

σT
− µ

T
N

= 2UB

T
− µB

T
N ≡ UB

T
− �B

T
− µB

T
N, (19)

where �B = −UB/T is the grandcanonical potential of the gas B [2].
The gas B, which has the zero-temperature energy, UB,0, identically zero by construction,

and the same heat capacity as the Fermi gas: ∂S/∂U = ∂SB/∂UB = 1/T and ∂U/∂T =
∂UB/∂T , is thermodynamically equivalent to the Fermi gas and therefore can only be the ideal
Bose gas. By Landen’s relations [1, 2, 8] we can rewrite UB and N as

UB ≡ σ(kBT )2Li2(e
βµB ) =

∫ ∞

0

εσ dε

eβ(ε−µB) − 1
(20)

and

N = −σkBT log[1 − eβµB ] =
∫ ∞

0

σ dε

eβ(ε−µB) − 1
(21)

(where e−βµB = 1 + e−βµ), which make the construction consistent. Note also that for the
ideal gases µB is always negative.

4. Ideal canonical gases at low temperatures

Nevertheless, at very low temperatures, say below Tc,F , the macroscopic considerations from
the previous section do no longer apply. Take for example equation (12) and calculate
µ − εF ≡ µB in the limit βµ � 1. We obtain

µB ≈ −kBT e−N/σkBT (22)

from where, if we set, let us say T = Tc,F /2, the population of the ground state of the Bose
system becomes

N0,B = 1

e−βµB − 1
≈ (σkBT )2 = N

σkBT

log(σkBT )
� N, (23)

which cannot be true [20]. A standard procedure to solve such a problem in the Bose system
is to take the population of the ground state separately into account and write the total particle
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number as

N = N0 +
∫ ∞

σ−1

σ dε

eβ(ε−µB) − 1
= N0 + σkBT log[1 − e−β(σ−1−µB)], (24)

with a smaller value of µB , i.e. µB < µ − εF < 0. Since N0,B ≈ (−βµB)−1, then
equation (23) implies

0 < (µ − εF )/µB � 1. (25)

(Note that in the literature there are more exact ways to calculate the canonical population
of the single-particle levels (see, for example, [13, 20]) but here I want only to show the
procedure by which the thermodynamic equivalence between the Bose and the Fermi gases
can be restored below the condensation temperature, so I consider only the leading order
corrections.) Apparently, there is no way to accord the fermionic and the bosonic pictures of
the gas. Equation (23) implies that if we translate the surface I (from figure 2) by making
the transformation S(U,N, . . .) → S(UB,N, . . .), we do not obtain the entropy of the Bose
gas—at least we do not obtain it close to the N axis.

On the other hand, by the method outlined in [2, 12], which was called, for brevity,
exclusion statistics transformation (EST), every distribution of fermions along the single-
particle energy axis is transformed into a distribution of bosons and the N0 fermions that
form the Fermi condensate are mapped onto the bosons in the Bose condensate. For systems
of constant DOS it is proved by EST that the Bose and the Fermi gases are equivalent at
any temperature in any detail. Moreover, a Fermi grand-canonical probability distribution is
transformed by EST into a Bose grand-canonical probability distribution (see section V.A
of [12]). Therefore, since the Bose condensate can correspond only to the degenerate
subsystem in the Fermi gas, this degenerate subsystem has to be taken into account separately
in a canonical Fermi gas, especially at low temperatures. To prove this, the grand-canonical
probability distribution of N0 (equation (3)) was investigated in [12] and it was shown
that it almost coincides with the Bose canonical probability distribution of the ground-state
population. The small difference between these distributions is due to the total particle number
fluctuation in the grand-canonical Fermi system. Therefore, in the canonical calculation, the
expression for the total particle number (12) has to be corrected as

N = 〈N0〉 +
∫ ∞

〈ε0〉+σ−1

σ dε

eβ(ε−µc) + 1
= σµc − 1 + σkBT log

[
1 + eβ(〈ε0〉+σ−1−µc)

]
. (26)

This correction leads to a smaller value of the canonical chemical potential, µc, which restores
the thermodynamical equivalence by satisfying the relation µB = µc − εF . The asymptotic
value of µc may be calculated using the canonical value of µB approximated in equation (24).
Since the condensate starts to form when µB ≈ −σ−1 (see, for example, [24]), well below the
condensation temperature we can approximate exp[β(σ−1 −µB)] by exp(βσ−1) ≈ 1 + βσ−1,
which, if plugged back into (24) gives a simple expression for the asymptotic behaviour of µc

at low temperatures:

β(εF − µc) = −βµB = [N − σkBT log(σkBT )]−1

≈ 1

N
+

σkBT log(σkBT )

N2
. (27)

If we drop the 1/N term from the last line above, which comes from the fact that the Fermi
condensate has to be separated by a hole from the rest of the gas, then we obtain an (almost)
parabolic dependence on temperature of the chemical potential: µc = εF − (kBT/εF )2 ·
log(σkBT )/σ , while the textbook result for this is µ = εF − kBT exp(N/σkBT ) (22).



4794 D-V Anghel

5. Conclusions

I discussed the effect of fermionic condensation—which is the apparition of a degenerate
subsystem at the bottom of the single-particle spectrum—in a system of constant density of
states. This leads to a correction in the calculation of the chemical potential in the canonical
ensemble at low temperatures (see equation (27)) and of the grand-canonical occupation
probability of the single-particle levels.

Shifts of the chemical potential in finite Fermi gases due to finite size effects have never
been reported before. This shift corrects the textbook expression for the low-temperature limit
of the chemical potential.

By applying the exclusion statistics transformation to the Fermi system, one obtains a
(thermodynamically equivalent [2]) Bose system. If the Fermi system is condensed, the
degenerate subsystem is mapped onto the Bose–Einstein condensate and for this reason
the name Fermi condensate was used. The Fermi condensate fluctuates and the values of
these fluctuations are simply given by the condensate fluctuations of the equivalent Bose
system [13, 18].

The results above may also be interpreted as a finite size correction of Jaynes’ theory [6].
According to this theory, the probability that a microscopic configuration is realized has the
form (1), which represents the least biased estimate given that the average number of particles
in the system is N and the average energy is U. Distribution (1), applied to an ideal gas of
fermions, leads to the Fermi grand-canonical distribution. On the other hand, the bosonic
distribution of the equivalent Bose gas is the least biased estimate, given the average excitation
energy UB and particle number N. As shown in this paper, the two distributions do not map
onto each other over the whole spectrum and they have to be corrected if the temperature is
lower than the condensation temperature. In other words, Jaynes’ probability distribution is
sensitive at low temperatures to the finite, fixed value of N in the canonical ensemble. In [12]
it is proved that the situation is even more dramatic when the DOS is not constant.
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